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The consequences of source charge and surface modulation are studied within the framework of the Poisson-
Boltzmann theory of electrolyte solutions. Through a consideration of various examples, it is found that
inherent modulation can lead to both like-charge attraction and overcharging effects.
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I. INTRODUCTION

As in any conductor, the potential due to a source distri-
bution is screened within an electrolyte solution. The screen-
ing charge carriers, or counterions, in these classical systems
are ionized atoms or molecules. The qualitative result of the
screening is typically only to reduce the distance out to
which the potential from a source distribution is significant.
However, experiments have shown that multivalent counte-
rions can allow for more exotic behavior �1�. For example,
over-efficient screening due to multivalent counterions can
sometimes result in the charge reversal of a molecule or sub-
strate. In a related effect, multivalent counterions have been
observed to mediate attractions between similarly charged
macromolecules. Study of these counterintuitive effects is
pertinent to the understanding of many biological and colloid
systems, in which molecular conformations and interactions
are often sensitively controlled by counterion concentration.

The Poisson-Boltzmann �P-B� mean-field theory provides
one of the simplest descriptions of electrolyte response and
often allows for accurate modeling of these systems. How-
ever, it has been proven for mirror-symmetric geometries
that like-charge attraction is impossible for a pair of identical
molecules within this theory �2�. This has bolstered the gen-
eral opinion that the physical mechanisms behind like-charge
attraction and overcharging cannot be understood within a
mean-field description of electrolytes. Most recent works
have, thus, attempted to understand these observations
through a consideration of fluctuation corrections to the
mean-field response �3–14�. Certainly, for homogeneous sys-
tems, it seems clear that fluctuations provide the only pos-
sible mechanism for bringing about the charge correlations
necessary for these effects. This conclusion does not imme-
diately follow for heterogeneous systems, however, since
static modulation allows for the introduction of some inher-
ent charge correlation. Indeed, studies have shown that het-
erogeneity can play an important role in these systems. For
example, numerical simulations have shown that modulation
of molecular geometry can significantly affect interactions
�15�. In addition, it has been shown perturbatively that within
the P-B theory, charge condensation onto a surface in an
electrolyte solution may be increased when the surface
charge contains certain limiting forms of modulation �16�.
This extra condensation can in turn lead to a decrease in the

osmotic pressure between two surfaces, demonstrating that
mean-field effects can at least help to facilitate both over-
charging and like-charge attraction �17�.

It is the purpose of the present paper to further explore the
effects of inherent, quenched modulations within electrolyte
solutions. Fluctuation effects are neglected and the electro-
lyte response is considered within the P-B formalism. Sig-
nificantly, it is shown that inherent modulations alone, can, in
fact, allow for both like-charge attraction and overcharging
mechanisms. The key to like-charge attraction within the P-B
theory is the breaking of mirror symmetry, which was as-
sumed to hold in �2�. A simple example is given which dem-
onstrates this point. Heterogeneity-induced condensation is
studied using a perturbation approach similar in spirit to that
considered in �16�. The present approach consists of expand-
ing about solutions to the linearized P-B equation and allows
for the consideration of additional charge modulation limits,
boundary surface modulations, and the effects of having
more than one species of screening ion. Various examples are
considered in order to provide a brief survey of these differ-
ent setups. Of particular interest is the counterion concentra-
tion dependence exhibited by systems containing multiple
species of ion. In principle, this dependence should often
allow one to determine whether modulation is a significant
contributor to overcharging in any particular experimental
observation.

An outline of this paper is as follows. In Sec. II, the P-B
theory is reviewed and solutions to the linearized P-B, or
Debye-Hückel �18�, equation are presented. Charge and sur-
face modulations are considered in Secs. III and IV, respec-
tively, while Sec. V contains concluding remarks.

II. POISSON-BOLTZMANN EQUATION

If one assumes that the mobile charge distribution in an
electrolyte solution is given by a sum over ion species of
Boltzmann factors multiplying bulk charge densities, then
the Poisson equation reads

�2� = − 4��
i

e−qi�/kTqini − 4��s

� �2� − 4��s. �1�

Here, � is the electrostatic potential, the qi and ni are the
charge and bulk densities of screening species i, kT is the
thermal energy, �s is the source distribution, and �� lD

−1 is
the inverse Debye length �19�. The first equation above is the*landy@physics.ucla.edu
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full P-B equation. The linearized approximation is written
out in the second line. Solutions to these equations provide
mean-field approximations to the potentials of physical sys-
tems.

It is possible to derive the P-B equation in a rigorous
manner that clarifies the physical approximations and as-
sumptions required to arrive at this expression. In the weak
potential limit, when the linearized form applies, it has been
shown that the equation is exact, while errors result at each
nonlinear order �20,21�. However, recent simulations have
shown that a partial cancellation of two neglected effects,
counterion correlations and finite ion sizes, can result in ap-
proximate agreement between the P-B solutions and experi-
ments �22�. Scattering experiments have also shown that the
full nonlinear solutions are in reasonable agreement with ob-
served charge distributions when only a single screening ion
species is present �23�, though some extra divalent conden-
sation was observed when both monovalent and divalent ion
species were present �24�. These results justify use of the
nonlinear equation, but the solutions should be considered
qualitatively accurate only outside the innermost, Stern layer
surrounding highly charged distributions.

Solutions to the inhomogeneous, linearized P-B equation
will be needed throughout this paper. The Poisson sum rule
provides a convenient method to determine the potential of a
lattice of point charges, from which one can obtain the po-
tentials of more general distributions through superposition.
For an arbitrary individual particle potential function f , the
rule states,

�
R

f�r − R� =
1

V
� �

G
f�r − R�exp�iG · R�dnR . �2�

Here, n is the dimension of the lattice, V is the n-dimensional
volume per unit cell of the direct lattice, the vectors R are the
direct lattice vectors of the distribution, and the vectors G are
the reciprocal lattice vectors of the distribution �25�. Shifting
the origin of integration in Eq. �2� to the projected position
of the observation point r immediately gives formal integral
representations for the Fourier coefficients of the potential.

To obtain the potential from a lattice of Coulomb point
charges that are linearly screened, one may plug in the
Yukawa potential function f =q exp�−�r� /r, which is the so-
lution to the linearized P-B equation with point charge
source q. The resulting expressions for the potentials of one,
two, and three-dimensional Yukawa lattices are �26�

�1,Y = 2��
G

K0��	G	2 + �2�1/2d�exp�iG · r� , �3�

�2,Y = 2���
G

exp�iG · r − �	G	2 + �2�1/2d�
�	G	2 + �2�1/2 , �4�

�3,Y = 4���
G

1

	G	2 + �2exp�iG · r� , �5�

where �, �, and � are the average charge densities of the
lattices. For large arguments, the modified Bessel function
K0 above may be expanded as �27�

K0�z� 
� �

2z
e−z�

j=0

	
�− 1� j�k=0

j �2k + 1�2

j ! �8z� j . �6�

It follows that each component will be exponentially damped
with both the frequency and the distance from the distribu-
tion for one and two-dimensional systems. To relate these
expressions to their unscreened analogs, one need only re-
place �	G	2+�2�1/2 by 	G	 in the nonzero frequency compo-
nents and then also replace the zero frequency component by
the appropriate continuous charge distribution expression.
This is given by −2� log r for a linear distribution, for ex-
ample.

III. SOURCE CHARGE MODULATION

Consider now the charge modulated system depicted in
Fig. 1. Two model polyelectrolytes are shown, each of which
consists of alternating point particles of charge +2 and −1
fixed on a rigid backbone. The period of the modulation is
taken to be 1. Note that each polyelectrolyte has a net charge
of +1 per period. If the two polyelectrolytes are shifted with
respect to one another by half of a period, as shown in the
figure, then they will attract one another when their separa-
tion is small, demonstrating that mean-field like-charge at-
traction is possible.

One can approximate the interaction energy of this system
in the Debye-Hückel limit by superposing the potential for
an infinite line of −1 charges with that for a line of +2
charges, each obtained by plugging into Eq. �3�, and truncat-
ing the series after two terms. The resulting approximate
interaction energy per period of the second polyelectrolyte is
given by

E�d� � 2K0��d� − 36K0���2��2 + �2d� , �7�

where d is the separation distance between the two polyelec-
trolytes. A plot of this function is shown in Fig. 2 for
�=3.0. Attraction is indeed observed at small separations
while repulsion is observed at large separations. This form of
attraction is not salt mediated, but as � is increased, the
repulsive effect at large distances is reduced. This trivial ex-
ample demonstrates that like-charged molecules can be at-
tracted to one another even when the electrolyte is consid-
ered at the mean-field level. Note, however, that if the model
polyelectrolytes are arranged in a mirror-symmetric orienta-
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�2

�1
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�1

�2
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�1

FIG. 1. Portions of two long, identical polyelectrolytes are
shown. At large distances they repel but at short distances they
attract.
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tion, as was explicitly assumed in �2�, then the coefficient of
the second term in Eq. �7� would also be positive. This is
consistent with the conclusion that identical molecules can-
not be attracted to one another, within the P-B formalism,
when they are arranged in a mirror-symmetric orientation.

We now turn to a consideration of charge modulation-
induced condensation. As mentioned above, this was previ-
ously studied in �16,17�. These previous works considered
solutions to the full nonlinear P-B equation for systems con-
taining a planar source distribution and only a single species
of screening ion. Solutions were obtained up to second order
in the parameters 
�q�� / �̄, for all q� �0. Here, �̄ was the av-
erage charge density of the planar source distribution and the

�q�� were the amplitudes of the oscillatory components of
the source distribution’s Fourier decomposition. Thus, these
solutions were valid in the limit of relatively weak modula-
tion relative to net surface charge. Interestingly, these solu-
tions indicated that each nonzero Fourier component inde-
pendently led to an increase of screening charge
condensation at second order in perturbation theory. This
universal result was also shown to hold for long wavelength
modulations. Here, it is shown that a similar conclusion also
holds true in the general weak potential limit.

For simplicity, we consider first a system that contains
only one species of counterion. The counterions are taken to
have charge q and bulk density n0, so that the P-B equation
reads,

�2� = − 4�qn0e−q�/kT − 4��s

� − 4�qn0
1 −
q

kT
� +

1

2
� q

kT
�2

�2� − 4��s. �8�

Here, �s is a perturbing planar charge distribution. The first
term in the above Boltzmann factor expansion corresponds
to the uniform background charge density. This does not
effect an electric field and so may be dropped for now. We
assume that the potential can be expanded in a series as
�=�1+�2+ . . ., where the term �k is of order �s

k. Collecting
like-powers of �s then gives the system of equations

�2�1 =
4�q2n0

kT
�1 − 4��s,

�2�2 =
4�q2n0

kT
�2 −

2�q3n0

�kT�2 �1
2,

. . . �9�

The solution to the first equation above may be obtained
from our earlier expressions if the distribution �s is expanded
in a Fourier series as

�s =
1

2�
�
G

AG exp�iG · r� . �10�

Note that while extra, oscillatory condensation results at this
first order, it averages to zero when integrated over the
modulation directions. The source term for �2 is proportional
to the square of the first order potential, however, and a
nonzero condensation will result at this order. To obtain the
net condensation, one need only consider the average charge
density above the surface. The equation for �2 is therefore
averaged over x and y to obtain

� �2

�z2 − �2��2 = −
�2

2
� q

kT
��

G
	AG	2

e−2�G2 + �2�1/2z

G2 + �2 , �11�

an ordinary differential equation which may be solved trivi-
ally. The solution is

�2 = �� q

kT��G 	AG	2

�G2 + �2�4G2 + 3�2�

��exp�− �z� −
�

2�G2 + �2
exp�− 2�G2 + �2z�� .

�12�

A plot demonstrating the resulting z dependence of a typical
term of the second order average charge density is shown in
Fig. 3. The total averaged second order counterion charge
density at the surface is given by the following sum over
modulation components:

0.5 1.0 1.5 2.0 2.5 3.0 d

�0.5
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�0.2
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E

FIG. 2. A plot of the approximate interaction energy versus
separation for the model polyelectrolytes.
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FIG. 3. A plot of the one component fluid’s second order
charge condensation versus z, the distance from the plane. Here,
G=2�=2 / lD. The condensation is particularly localized and then
screened at larger distances. The localization increases exponen-
tially with the magnitude of G. The total integrated charge from
z=0 to 	 is zero for each component, as expected.
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�2�z = 0� = −
1

4�

�2

�z2�2

= qn0� q

kT�2

�
G

	AG	2

4G2 + 3�2�2 −
�

�G2 + �2� .

�13�

This demonstrates that indeed there is extra condensation
proportional to the square of the amplitude for each mode of
the modulation, consistent with the long wavelength and
small modulation results of �16,17�. The present analysis ex-
tends the conclusion that universal modulation-induced con-
densation is expected at second order to all relative values
and wavelengths of modulation. In particular, the result ap-
plies to systems that have little or no net charge but large
modulations. In systems such as these, the modulation-
induced condensation could easily result in overcharging.
This demonstrates that mean-field overcharging is possible in
certain limits.

A single component electrolyte is somewhat nonphysical
in that the solution contains charges of only one sign and
thus cannot be net neutral. Accordingly, it is of interest to
consider systems that contain multiple species of ions. This
would be difficult when considering solutions to the full P-B
equation but the present solution technique is readily applied
to such systems. In a general, neutral electrolyte solution, the
potential satisfies the approximate equation

�2� � �2� − ��2 − 4��s. �14�

Here, the coefficients �2 and � are now given by sums over
ions species as

�2 =
4�

kT
�

i

qi
2ni �15�

� =
2�

�kT�2�
i

qi
3ni. �16�

Charge neutrality requires �qini=0, if the charge of the poly-
electrolyte itself is neglected, for simplicity. Solving the re-
sulting system of equations as in the above gives the follow-
ing for the average electrolyte charge density at the surface:
up to second order,

�̄�z = 0� = �0 +
�

2�
�

G�0

	AG	2

4G2 + 3�2�2 −
�

��2 + G2� ,

�17�

where �0 is the charge density that would appear for a uni-
form distribution of charge.

It is interesting to consider some particular examples.
Consider first a net neutral electrolyte system containing
screening charges of both signs and equal magnitudes. For
this system, the quadratic terms in the expansion of the Bolt-
zmann factors will cancel and no second-order potential or
condensation will result. This implies that any extra conden-
sation would have to occur at higher order for such systems
and the resulting effect should be much weaker. The qua-
dratic term in the expansion is retained, however, for a net

neutral system that contains charges of different sign and
different valence. For example, if the positive counterions
have charge q1 with bulk density n0 and the negative coun-
terions have charge −q2 with bulk density

q1

q2
n0, then the re-

sulting second order coefficient is given by

� =
2�q1n0

�kT�2 �q1
2 − q2

2� . �18�

The result is that extra charge condensation still occurs at the
lowest non-linear order for a net neutral system, provided the
free charges have different valences. Note that the net sign of
the resulting modulation-induced condensation does not de-
pend on A0. Extra condensation occurs for both species of
ion, and the sign of the net condensation depends only on
which species dominates. This, in turn, is determined by the
sign of the quadratic term in the expansion of the P-B equa-
tion; if � is large and positive, the resulting condensation will
be large and positive, and vice versa. This obviously holds
for any distribution of counterion species. Further comments
on this point appear in the discussion section of the paper.

One and three-dimensional charge modulated distribu-
tions may be analyzed in a similar manner. For a three-
dimensional lattice, the concept of condensation is not well
defined. In the one-dimensional case, however, an analogous
condensation to that discussed above for surface distributions
also occurs. Each modulation component leads to additional
condensation at second order, the sign of which depends only
on the sign of the quadratic term in the expansion of the P-B
equation. A consideration of similar surface modulation ef-
fects is contained in the following section.

IV. SURFACE MODULATION

In the above, we saw how charge modulation can allow
for oscillatory potential components that lead to a net charge
condensation at nonlinear orders. A modulated surface can
also allow for the introduction of potential modulation and
similar condensation effects must naturally result. It is
worthwhile to consider some examples, and two are pre-
sented here which are susceptible to perturbation expansions.
These examples are of interest, not because they accurately
model physical systems, but because they demonstrate the
mechanisms involved for different boundary conditions and
geometries.

A constant potential boundary condition problem will be
considered first, where the surface takes the form,

Z�x,y� = 
 �
G�0

AGeiG·r. �19�

Here, 
 is a small constant and the AG are assumed to be
O�
0�. At linear order, the system of equations to be solved
is

���2 − �2��1 = 0 if z � Z�x,y� ,

�1 = 1 if z = Z�x,y� ,

�1 → 0 as z → 	 ,
� �20�

and the term �1 is assumed expandable as
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�1 = �
k=0

	

�1,k

k. �21�

Each of the �1,k satisfy the Debye-Hückel equation individu-
ally and may be determined iteratively by expanding the
boundary condition as

1 = �1�z = Z� = �
n=0

	

��
G

AGeiG·r�n
n

n!
� �n�1

�zn �
z=0

. �22�

Equating coefficients at order 
k on both sides of Eq. �22�
generates the boundary conditions for the �1,k at the simple
surface z=0. Solving up to second order in 
 gives

�1,0 = exp�− �z� , �23�

�1,1 = �
G

�AGeiG·r exp�− �G2 + �2z� , �24�

�1,2 = �
G

	AG	2���G2 + �2 −
�2

2!
�exp�− �z� . �25�

The last term has once again been averaged over the modu-
lation directions to simplify the calculation. As in the charge
modulation discussion, each modulation component is ob-
served to independently result in extra second order conden-
sation. Here, however, the surface modulations generate the
extra charge condensation at linear order in the P-B theory.
Since the effect takes place at linear order, the sign of the
condensation does not depend on the sign and distribution of
the counterions, but instead is always opposite to that of the
surface potential.

The first order solution above can easily be plugged back
into the non-linear P-B equation to obtain the next order term
in the solution. Although this won’t be done here, we note
that the nonlinear terms in the P-B expansion can result in
extra condensation at the same order in the potential and in 

as that obtained above. These terms, however, are sensitive
to the sign of �. In particular, if �=0, the linearized P-B
solution will be correct to lowest order. Alternatively, the
higher order solutions can result in charging of the wrong
sign, or negative screening, if � is chosen appropriately.

We now consider a nearly cylindrical geometry with
boundary conditions that are more applicable to biological
molecules. The setup consists of a line of charge of unit
linear charge density surrounded by a dielectric material of
shape

R = 1 + 
 cos�Gz� . �26�

Outside the dielectric near cylinder, the potential is assumed
to satisfy the linearized P-B equation. The following system
of equations specifies the unique solution for the potential:

�
��2 − �2�� = 0 if r � R�z� ,

�2� = −
4�


i
� if r � R�z� ,

� → 0 as r → 	 ,

�i = �o at r = R�z� ,

Di · n̂ = Do · n̂ at r = R�z� .

� �27�

Here, the subscripts i and o stand for inside and outside,
respectively, 
 is the dielectric coefficient, D is the electric
displacement, n̂ is the outward normal to the near cylinder’s
surface, and �=��r� /2�r.

The boundary conditions may be expressed at the surface
r=1 in a similar manner to that presented in Eq. �22�. For
example, the boundary condition relating the equality of the
normal component of the electric displacement inside and
outside the dielectric-solution interface takes the form


i�
k=0

	
�
 cos�Gz��k

k!
� �k � �i · n̂

�rk �
r=1

= 
o�
k=0

	
�
 cos�Gz��k

k!
� �k � �o · n̂

�rk �
r=1

, �28�

where the normal is given explicitly by

n̂ =
r

�1 + 
2G2 sin2�Gz�
+


G sin�Gz�z
�1 + 
2G2 sin2�Gz�

. �29�

Up to second order, the boundary conditions generate terms
of the form

�i = A −
2�


i
log r + 
BI0�Gr�cos�Gz� + 
2�C

+ DI0�2Gr�cos�2Gz�� , �30�

and

�o = EK0��r� + 
FK0��G2 + �2�1/2r�cos�Gz� + 
2�GK0��r�

+ HK0��4G2 + �2�1/2r�cos�2Gz�� , �31�

where I0 is the modified Bessel function of the first kind. The
boundary condition equations further enable one to obtain a
system of linear equations that specify the unique solution
for the coefficients A through H. The algebra is most easily
carried out in a software package such as MATHEMATICA. The
resulting expressions are easy to obtain but are too lengthy to
report here. Once the coefficients for the potential have been
determined, one can read off the effective charge of the near
cylinder, defined here to be �E+
2G� /2. This is proportional
to the coefficient of K0��r� above, a natural choice given that
the potential due a screened line of charge is given by
2�K0��r�, from Eq. �3�.

We now examine how the resulting effective charge varies
with the wavelength of the surface modulation. At long
wavelength the surface curvature is low and the cylinder has
a slowly varying local radius. The effective charge at long
wavelength is thus expected to be that which one would
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obtain through an appropriate average over radii of the
effective charge for an unmodulated cylinder. The appropri-
ate average is

�̄ = �
0

1 du

�
o�1 + 
 cos 2�u�K1���1 + 
 cos 2�u��
.

�32�

This integral is over a convex function, which, by Jenson’s
inequality, implies that the modulation will result in an in-
crease rather than a decrease in the effective charge of the
cylinder. A plot of the effective charge, valid to second order
in 
, versus wavelength is shown in Fig. 4. The effective
charge does approach the radii-averaged unmodulated value
at long wavelengths, as expected. Note also that the effective
charge decreases as the modulation wavelength decreases,
and below wavelength values of l0�2, the resulting conden-
sation works to reduce the net effective charge of the cylin-
der. However, the perturbation expansion converges most
quickly when the modulation wavelength is large. Indeed,
the expansion will break down when 
G�1 owing to the
fact that the 
 power series of n̂ in Eq. �29� will diverge in
this limit. Thus, convergence concerns indicate that the plot
should not be considered quantitatively accurate at small val-
ues of l0. A decrease in the effective charge is also observed
at short modulation wavelengths for very small 
, however,
where the second order solution is likely to be very accurate.
It is thus reasonable to expect the observed decrease in ef-
fective charge at small modulation wavelengths to be quali-
tatively accurate at larger 
 values as well.

These two examples demonstrate that the sign of surface
modulation-induced condensation can be sensitive to both
counterion valence and modulation wavelength. A modula-
tion wavelength dependence was observed only in the sec-
ond example but it also holds true for some other systems,
linear geometries with constant potential boundary condi-
tions providing one example. We have focused above on the

net condensation for these systems. It is worth noting, how-
ever, that the oscillatory components of these potentials can
introduce attractive terms to the interaction between two
shifted, identical molecules, just as in the charge modulated
example presented earlier.

V. DISCUSSION

In this paper, a collection of simple examples have been
presented that demonstrate how inherent modulations can al-
ter the potentials within electrolyte solutions. It was first
shown that charge modulation can result in like-charge at-
traction between identical molecules within the P-B formal-
ism. The purpose of including this discussion was only to
make the technical point that attraction is possible even when
the free screening charges are considered at the mean-field
level, contrary to some suggestions in the literature. Next, it
was demonstrated that charge modulation results in extra
screening charge condensation when the P-B equation is ex-
panded to second order in the potential. This result, when
taken together with the results of �16�, implies that charge
modulation-induced condensation universally occurs within
the P-B formalism when the potential is expanded to second
order in the modulation amplitudes. In particular, the result
applies to systems that have large modulations but little net
charge. In systems such as these, charge modulations can
easily result in overcharging. It was further shown that
screening charges of higher valence allow for a reduction in
the net cancellation of modulation-induced condensation that
occurs in neutral, univalent electrolyte systems. This is con-
sistent with the fact that overcharging has only been ob-
served in systems that contain multivalent counterions. Simi-
lar results were shown to apply for surface modulated
systems and related effects can be expected whenever non-
linearities appear in either the differential equation or the
boundary conditions that determine the potential.

We conclude by elaborating upon how one can test
whether charge modulation significantly contributes to any
experimental observation of overcharging. In the above, we
noted that mobile charges of equal valence but opposite sign
are expected to condense in equal numbers onto a substrate
due to inherent charge modulations. This is not the case for
fluctuation-induced condensation, however, where charges
are only expected to condense onto substrates of the opposite
sign. This suggests that an overcharging observation can be
identified as modulation induced if the overcharging is ne-
gated through the introduction of equal quantities of multi-
valent counterions of each sign into the system. We note that
this test would not apply to systems where small surface
modulations cause condensation in the weak potential limit,
where the linearized P-B equation applies. It would, how-
ever, also apply to systems where surface modulations bring
about condensation at higher orders in the P-B expansion.
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